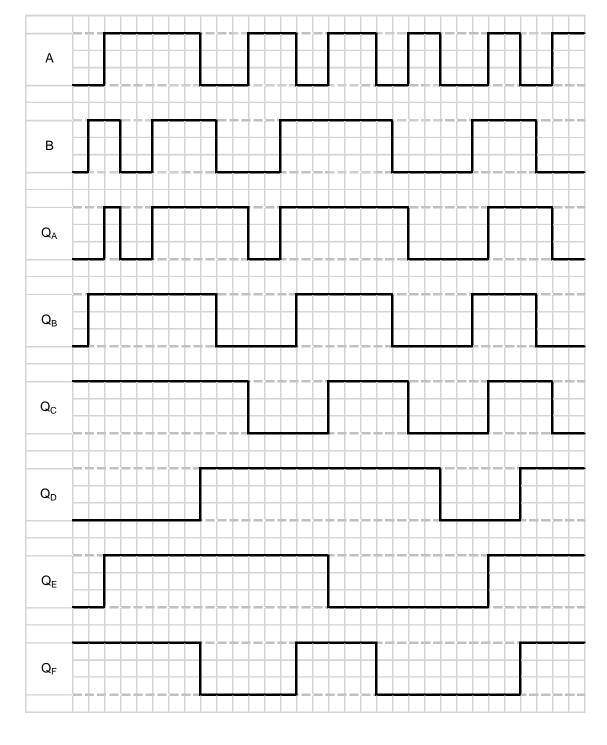
Q_A: Latch D activo en alto


Q_B: Latch D activo en bajo

Q_C: Flip Flop D activo en subida

Q_D: Flip Flop D activo en bajada

Q_E: Flip Flop T activo en subida

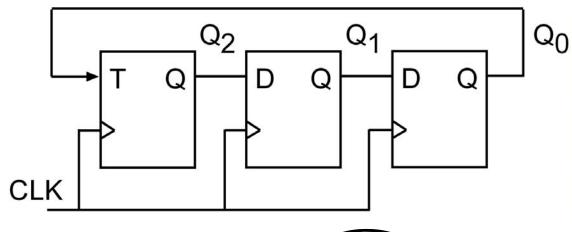
Q_F: Flip Flop T activo en bajada


```
Q_A: Latch D activo en alto
Si A = 0 \rightarrow Q_A no cambia, si A = 1 \rightarrow Q_A = B
```

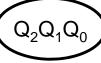
 Q_B : Latch D activo en bajo Si A = 0 \rightarrow Q_B = B, si A = 1 \rightarrow Q_B no cambia

 Q_C : Flip Flop D activo en subida Si A $\uparrow \rightarrow Q_C$ = B, si A = 0, 1 o $\downarrow \rightarrow Q_C$ no cambia

 Q_D : Flip Flop D activo en bajada

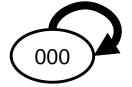

Si A $\downarrow \rightarrow$ Q_D = B, si A = 0, 1 o $\uparrow \rightarrow$ Q_D no cambia

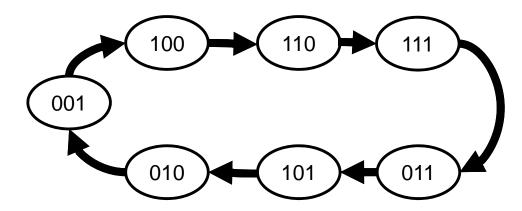
Q_E: Flip Flop T activo en subida


 Q_E permuta si A \uparrow y B = 1, si no Q_E no cambia

Q_F: Flip Flop T activo en bajada

 Q_F permuta si A \downarrow y B = 1, si no Q_F no cambia




8 estados posibles:

Se forman 2 secuencias cíclicas

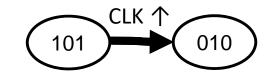
- una de 7 estados
- otra de un único estado

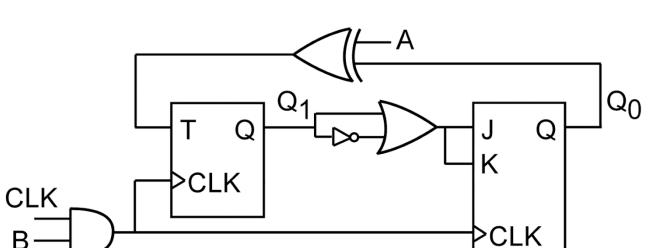
D	Q	Q
0	0	1
1	1	0

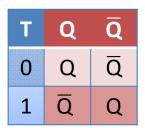
Т	Q	Q
0	Q	Q
1	Q	Q

Cuando el CLK 个: Flip Flop T:

- Q_2 :
 - Permuta si Q₀ es 1
 - No permuta si Q₀ es 0


Flip Flops D:

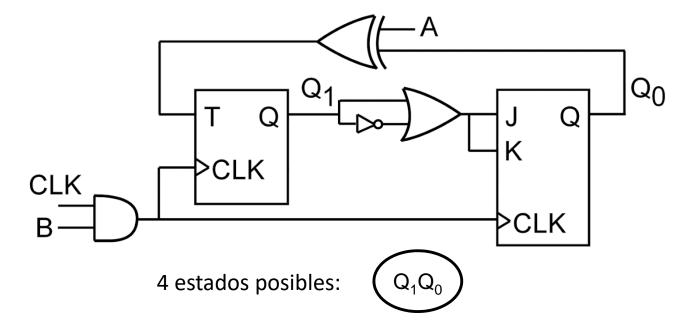

- Q₁: toma el valor de Q₂
- Q₀: toma el valor de Q₁


Ejemplo: si $Q_2Q_1Q_0 = 101$

- Q_2 permuta de 1 a 0
- Q₁ toma el valor 1
- Q₀ toma el valor 0

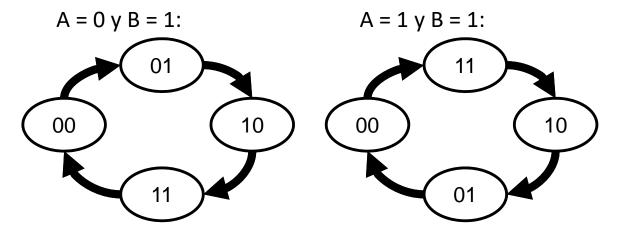
Es decir:

J	K	Q	Q
0	0	Q	Q
1	0	1	0
0	1	0	1
1	1	Q	Q


J = K, por lo que equivale a un Flip Flop T, ya que cuando se active

- Si J = K = 1, permuta
- Si J = K = 0, no permuta

En este caso J = K = $Q_1 + \overline{Q_1}$ = 1, por lo que cuando se active, permuta


 $T = A \bigoplus Q_0$, por lo que, cuando se active

- Si A = 0, T = Q_0 , por lo que permuta si $Q_0 = 1$
- Si A = 1, T = $\overline{Q_0}$, por lo que permuta si $Q_0 = 0$

Т	Q	Q
0	Q	Q
1	Q	Q

J	K	Q	Q
0	0	Q	Q
1	0	1	0
0	1	0	1
1	1	Q	Q

Contador de 2 bits, ascendente Contador de 2 bits, descendente

B = 0:

Los biestables no reciben subidas de reloj Por lo tanto, sus salidas no cambian y el circuito permanece en un estado Q₁Q₀ concreto Contador "pausado"